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Abstract

Previous research at AFIT has resulted in the development of a DGPS-aided
INS-based precision landing system (PLS) capable of meeting the FAA precision
requirements for instrument landings. The susceptibility of DGPS transmissions to
interference/jamming and spoofing must be addressed before DGPS may be safely
used as a major component of such a safety-of-flight critical navigational device.
This thesis applies multiple model adaptive estimation (MMAE) techniques to the
problem of detecting and identifying interference/jamming and spoofing failures in
the DGPS signal. Such an MMAE is composed of a bank of parallel filters, each
hypothesizing a different failure status, along with an evaluation of the current prob-
ability of each hypothesis being correct, to form a probability-weighted average out-
put. Performance for a representative selection of navigation component cases is

examined.

For interference/jamming failures represented as increased measurement noise
variance, results show that, because of the good FDI performance using MMAE, the
blended navigation performance is essentially that of a single extended Kalman filter
artificially informed of the actual interference noise variance. Standard MMAE is
completely unable to detect spoofing failures (modelled as a bias or ramp offset signal
directly added to the measurement). This thesis shows the development of a moving-
bank pseudo-residual MMAE (PRMMAE) to detect and identify spoofing failures.
Using the PRMMAE algorithm, spoofing failures are very effectively detected and
isolated; the resulting navigation performance is equivalent to that of an extended

Kalman filter operating in a no-fail environment.
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MMAE DETECTION OF INTERFERENCE/JAMMING AND
SPOOFING IN A DGPS-AIDED INERTIAL SYSTEM

1. Introduction

1.1 Background

Aircraft are often required by necessity or bad luck to fly under adverse weather
conditions. The purposes of military air operations are often best accomplished
under such low-visibility conditions. Precise, safe landings are required even when
lack of visibility would make landing by a human pilot impossible. The availability
and integrity of a precision landing system is critical for safety of flight during low

visibility conditions.

The Instrument Landing System (ILS) currently in use works on a relatively
simple localizer/glide slope method. Guidance to the runway is provided by highly
directional radio signals. The localizer provides the information needed for lateral
guidance on the approach path. The glide slope signal provides the needed vertical
guidance. Figure 1.1 shows a representation of the localizer and glide slope radiation
patterns. The carrier frequencies used in the ILS are about 110MHz and 330MHz
for the localizer and glide slope signals, respectively. The frequencies indicated on
the diagram describe the modulation frequencies used. The effect of the ILS signals
just described is to create a virtual funnel which will guide an approaching airplane

to the runway, as is depicted in Figure 1.2.

The FAA has established clear precision requirements for instrument landings.
These requirements constitute the performance constraints for the current ILS as
well as for the replacement GPS-based precision landing system (PLS) examined in

this thesis. The FAA requirements are shown in Category III required navigational
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Glideslope (as seen from the side)

Localizer (as seen from above)

Figure 1.1 Localizer/Glideslope Method

Figure 1.2 Funnel Approach

precision (at the 200 foot “decision height”) is roughly depicted by the ellipse (two-
sigma values) shown in Table 1.1. Figure 1.3. The accuracies listed under Category
III represent the required precision for a zero visibility landing, wherein the pilot does
not make visual contact with the runway until after touchdown. Conceivably, this
precision would also make completely autonomous landings possible for unmanned
vehicles or if the pilot became incapacitated. The localizer/glide slope ILS currently

in use is capable of providing Category III accuracy. See Table 1.1.

The current ILS has two major drawbacks which have motivated the desire

for an operationally certified GPS-based precision landing system (PLS). First, the
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Vertical Accuracy | Horizontal Accuracy
Category 1 +4.1m +17.1m
Category 11 +1.7m £5.2m
Category II1 +0.6m +4.1m

Table 1.1 Precision Landing System Two-Sigma Accuracies [3]

Figure 1.3 Category III Precision (Two Standard Deviations)

~
n .-
\

current ILS has a very limited area of usefulness (see Figure 1.2). The area of
guidance is restricted to a straight path extended for several miles from the end of
the runway. It would greatly contribute to the safety and efficiency of air operations
if controllers were able to know the precise locations and courses of all airplanes in
the controlled area. The current ILS has no capacity to contribute, in this manner,
to the safety, guidance, or regulation of typical traffic patterns of aircraft in various
stages of landing or taking off around an airfield. The second major drawback of the
current ILS is the maintenance cost of the aging system. The Microwave Landing
System (MLS) was originally thought to be the replacement for the current ILS.
The MLS however, works on the same directional radiation principles and so has the
same limited coverage drawback of the current ILS. Recently the MLS replacement
plan has been permanently discarded due to the high cost of the upgrade and the
good potential of a GPS-based system for precision landings [33,37,46].

The global positioning system (GPS) has been demonstrated to provide very
precise position measurements, especially when combined with other sensors [18,36].

Figure 1.4 [34] shows the two-sigma accuracy capability of various GPS implemen-
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tations which use the standard positioning service (SPS) L1 GPS transmission. The
GPS accuracy ellipse shown does not reflect the scheduled removal of selective avail-
ability (SA). SA is a random dither imposed on the GPS signals in order to degrade
the SPS precision available to non-authorized (non-U.S. military) users. Differential
GPS (DGPS) provides increased navigation precision using two closely located GPS
receivers. One of the receivers must be at a known location so that the GPS solution
errors may be isolated. The error corrections are then transmitted to the second
receiver, which corrects its own navigation solution. It can be seen that, although
neither basic GPS nor DGPS gives the degree of accuracy required for precision
landings, the accuracy of carrier phase GPS (CPGPS) is more than sufficient for
aircraft landings. At the time of this writing, receiver technology has not yet made
CPGPS available during all phases of flight, especially during highly dynamic flight.
However, for the benign flight patterns typical in the area of airfields, the accuracy

of CPGPS could be fully utilized with current technology.

The GPS has several inherent strengths and weaknesses which directly influ-
ence its application to the PLS problem. The continual, global availability (inter-
mittent at very high latitudes) of the GPS signal, along with the accuracy available
from CPGPS, make a GPS-based ILS appear to be an improvement (in positioning)
from the current ILS. A GPS-based PLS would overcome all of the major limitations
of the current ILS, while exceeding its current performance specifications. It can be
seen in Figure 1.4 that GPS alone (the outer ellipse) and even differential GPS do not
meet the accuracy requirements for a PLS (the central ellipse), especially in the ver-
tical direction. This vertical weakness of GPS leads to the desire to include a radar
altimeter in the integrated PLS system. A ground-based pseudolite will also help
with the vertical precision problem. A pseudolite improves the navigation solution
by providing GPS satellite-like signals from a known position (surveyed, eliminating

satellite position uncertainty) below the user’s horizon.
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Current ILS (Cat HI) |

CPGPS
o (etatoml scal caly)

| 100m |

Figure 1.4 GPS Accuracies (Two Standard Deviations)

A significant weakness of GPS, with respect to the PLS application, is the
susceptibility of the very low power GPS signal to interference. For military applica-
tions this interference could originate from enemy interference/jamming or spoofing.
Benign interference such as that from unregulated electronic devices would proba-
bly have the greatest effect on civil aviation, although interference from low-wattage
jammers placed by terrorists is a viable concern. The susceptibility of the GPS signal
to external interference strongly motivates the use of a GPS-aided INS-based PLS,
rather than a standalone GPS-based PLS. The navigation solution of a low-quality
INS drifts at a rate of about four nautical miles per hour or 400 feet per minute.
While this rate of drift makes the INS unsuitable for a PLS, it does give an accurate
enough solution for an aircraft to navigate safely away from the landing area when

a GPS failure is detected. This work will consider integration of low-, medium-, and




eSS

high-quality INSs as discussed in Section 1.4. The low-quality INS is used here to
illustrate the drift problem.

The accuracy potential of GPS as a primary sensor in a precision landing
system is evident. However, possible interference of the GPS signal, as well as
possible system failures from other sources, remain a major concern. Whatever the
source of the interference, the navigation solution provided by any GPS receiver
under interference conditions would be unreliable. The dependability of the GPS
signal as a safety-of-flight-critical sensor in a precision landing system remains to be

adequately addressed.

1.2 Problem Definition

The purpose of this thesis is to develop an effective method of receiver au-
tonomous integrity monitoring (RAIM) for GPS-aided INS-based PLS. The RAIM
scheme to be developed in this work will accurately indicate the integrity of the
GPS (and overall system) navigation solution during interference/jamming or spoof-

ing conditions.

1.3 Summary of Current Knowledge

Recent research in the area of GPS-based PLS conducted by the FAA and
other researchers has focused on developing and verifying a GPS-based navigation
architecture [3,10,33,37,46] which can provide the necessary navigational accuracy
for precision landings. The work of Gray [10] (using standard GPS) and Britton [3]
(using DGPS) at AFIT has shown that an integrated GPS-aided INS-based PLS
meets FAA requirements for Category I and II precision approaches. Paielli, Russell,
and others [33] have demonstrated the increased accuracy potential which may be

obtained by using carrier phase GPS measurements.

Much research effort has focused on developing a working RAIM method for
GPS. Comparatively little work has focused on integrity monitoring for a GPS-aided
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INS-based navigation system. Vasquez [41,42] has applied generalized likelihood
ratio and chi-square testing schemes to the problem of interference/jamming and

spoofing detection for the GPS signal in a GPS-aided INS-based system.

1.4 Assumptions

The integrated system to be used will include a ground-based pseudolite which
will provide GPS-like transmissions from a surveyed location near the runway [10].
The main advantage of a ground-based pseudolite is the improvement it makes in
the geometry of the GPS problem. GPS satellites are located strictly above the
user’s horizon. The pseudolite provides a range measurement from beneath (below
the horizon) the user. In this research, it will be assumed that differential GPS,
pseudolite, radar altimeter, baro altimeter, and INS navigation signals will all be
available. The benefits (to failure identification) of the pseudolite and radar altimeter
will be analyzed by conducting some performance simulations without one or both
of these measurements. Three different accuracies of INSs will be used, a high-
quality INS as might be used by the military, a medium-quality INS like those
used in commercial transportation, and a low-quality INS which may be inexpensive
enough to be used in small private aircraft. Radar altimeter measurements are
assumed to be reflected from the WGS-84 reference ellipsoid (no terrain effects will
be modeled) when the aircraft is at less than 3000 feet AGL (above ground level).
A radar altimeter is considered to be a reasonable part of such a PLS because of
its common availability on military aircraft and commercial airliners, as well as the

non-prohibitive cost of incorporating it into small civil aviation vehicles.

1.5 Literature Review

This section reviews the current literature relative to the GPS-aided INS-based
Precision Landing System (PLS). It also reviews the literature pertaining to several

of the most viable techniques of failure detection and identification. The algorithm
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discussions presented in this section are general and quite terse; a detailed technical

description of each algorithm is taken up in Chapter 2.

1.5.1 Basis of a GPS-aided INS-based PLS. Much recent research has
focused on developing and flight testing a GPS-based PLS to replace the current
ILS (and recently cancelled MLS) system [3,10,12,33]. To ensure safety of flight,
aircraft require an internal, independent navigation reference system that may be
used when the GPS signal is unhealthy or jammed. Where the cost is justified,
inertial navigation systems (INSs) are used to provide this independent, internal
navigation reference. Military and large commercial aircraft use INSs. The cost
of lower-quality INSs (and of GPS systems) has become realistic for civil aviation
applications. Additional navigation devices may be required to aid the INS during

lengthy GPS outages.

INSs provide very accurate (relative) navigation over short periods of time but
drift substantially (accumulate position bias) over time. The GPS provides accu-
rate navigation information over long periods (no drifting trend) but can easily be
lost for short times during periods of highly dynamic aircraft maneuvering or GPS
signal interference. Integration of INS and GPS navigation data with other navi-
gation aids provides increased navigation accuracy during benign flight and allows
reliable navigation in the face of aircraft dynamics or intermittent GPS interfer-
ence/jamming [10,12, 36]. The standard navigation system on military aircraft is
based on an INS aided by GPS and other navigation aids. A GPS user can only
receive signals from satellites located above the horizon (ideally, transmitters would
be available from below the horizon as well, as is the case when pseudolites are
present in the local area); there is no sensitivity to the cardinal direction (azimuth)
to the satellite. This geometry makes the GPS navigation solution least precise in
the vertical direction. To help overcome this weakness, altitude sensors are standard
navigation aids for systems using GPS. An integrated system consisting of (at least)

GPS, an INS, and barometric altimeter is common on military aircraft. A radar
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altimeter is also generally present on military and commercial aircraft although it is
not typically a part of the integrated navigation system. For this work a radar al-
timeter, when present, will be modelled as a part of the integrated navigation system.
The integration of the radar altimeter was first done by Gray [10] and Britton [3]
to improve the vertical-channel navigational precision during approach and landing

maneuvers.

Where an integrated navigation system is in place, especially in military appli-
cations, it is desired to develop a PLS based on the entire available set of navigation
components. Past AFIT theses have focused on the development of a GPS-aided
INS-based landing system. This research has shown that a differential GPS-aided
INS-based PLS provides Category I and II landing precision [3,10]. The reliabil-
ity of this landing configuration, especially in possibly jammed or spoofed areas of

operation, remains to be fully investigated.

1.5.2  Integrity Monitoring. This work focuses on the problem of detect-
ing radio frequency (rf) interference which would corrupt local GPS signals and the
resulting navigation solution. Civilian GPS users will most often face benign in-
terference from rf sources such as microwave or television transmitters. Military
GPS users must anticipate malignant interference/jamming or spoofing from enemy
sources. The signal fault identification process is referred to as Fault Detection and
Identification (FDI). This section reviews the literature pertaining to four techniques
of FDI, which have been or could be applied to the current integrity monitoring prob-
lem. Kalman filtering will be used in all of the cases examined to provide integration
of the INS with other systems. The measurement residual signals generated by the
Kalman filters will be used to perform the FDI functions [13-15,20,25]. See May-
beck [21-23] for a thorough presentation of Kalman filter theory and applications.

1.5.2.1 Integrated Navigation and FDI Concepts.  Real-world naviga-

tion sensors cannot produce an exact navigation solution; they give a measurement,
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corrupted by noise, of the unknown navigation parameters. Modern integrated nav-
igation is implemented by using Kalman filters to combine measurements optimally
from multiple information sources, based upon the known (or determined) relative
precision of each source. Conceptually, Kalman filters estimate the system state,
propagate that estimate forward to the next measurement sample time using an
assumed system model, then update that state estimate using actual measurement
information. The difference, at each update time, between the filter’s state predic-
tion (based on propagating its system model) and the measurement actually taken,
is called the measurement residual. The measurement residual is a reliable indicator
of how well the filter’s assumed system model matches the actual system. When
the filter model disagrees with the real world, the characteristics of the residuals can

provide information about how real system differs from the filter’s model.

The fundamental objective of FDI is to examine the available information in
such a way that system failures can be detected and identified. Navigation sensor
failures are identifiable as discrepancies in the solutions provided by different infor-
mation sources [44], either as directly viewed from the sensor, or as observed in the
character of the measurement residual of the integration Kalman filter. The PLS
under examination here, consisting of (at least) GPS, an INS, barometric altimeter,
and radar altimeter, is well-suited to FDI techniques based on multiple, redundant
information sources. The solution to the current problem will involve checking the
received GPS navigation data against the internal INS navigation solution, which is
not subject to external interference. It is desired to incorporate the received GPS
signals when they are currently valid, because the GPS solution accuracy greatly

contributes to the precision required for ILS-like aiding.

Each FDI algorithm examined differs in function and complexity. Of the al-
gorithms discussed, chi-square testing only detects the existence of failures in the
system, while the other three FDI methods perform some degree of fault identifica-
tion and recovery [22,26,40,44].

1-10




1.5.2.2 Redundancy (The Voting Method). Perhaps the simplest
and most reliable failure detection technique is the use of duplicate hardware for
voting [41,42,44]. Simple voting requires three redundant information sources. The
outputs of each identical element are compared, allowing them to vote on what
information is valid. If two elements agree on the aircraft position and the third

provides a different solution, the deviant element is declared to have failed.

The voting method for triply redundant devices has two restrictive weaknesses.
Once any single element has failed and is removed from the redundant triad, the sys-
tem can detect, but is unable to isolate, a second failure. If a second failure occurs,
the system cannot determine which element is in error and both remaining elements
should be taken off line in order to maintain the integrity of the system’s naviga-
tion solution. A second weakness of the voting method is the additional expense,
space, weight, and computational ability required for redundant hardware [26,40,44].
The requirement for these additional resources typically makes the voting method

unacceptable for avionics applications.

1.5.2.3 Chi-Square Testing. The chi-square testing algorithm [40,
44] assumes the use of a Kalman filter to combine information from the available
navigation sensors. This method is based on monitoring the measurement residuals of
the Kalman filter. The filter’s residuals and their filter-computed residual covariance
are monitored. Measurement residuals for a filter having the correct model of the real
world should display four well-defined characteristics. Residuals should be white,
Gaussian, zero mean, and have covariance HP~HT + R (or closely approximate
those properties) [6,13,21,22,40]. Gaussian-ness, zero-mean-ness, and covariance
HP~HT + R are exploited in the test conducted in this fault detection method. The
chi-square test declares a failure when the tested properties of the filter residuals are
inconsistent with those expected from a filter having the correct model. For instance,
one can run a hypothesis test (to some confidence level) that 95% of a residual’s

scalar component lies between 0+ twice the filter-computed standard deviation for
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that residual component. The chi-square test is easy to implement and runs quickly
but provides only a binary fail/no-fail indication of system operation. It is not useful

for failure identification [41,42,44].

1.5.2.4 Generalized Likelihood Ratio Testing.  Like chi-square testing,
Generalized Likelihood Ratio testing (GLR) uses the measurement residuals of the
navigation system’s Kalman filter [40-42,44,45]. The GLR algorithm attempts to
detect and isolate failures by knowing the effect that each failure has on the character
of the filter residuals. Maximum Likelihood Estimation (MLE) is used to determine
which condition is most probable, given the current character of the filter residuals.
In general, to implement the GLR method, the designer is required to provide a
signature failure matrix which provides the algorithm with the description of how
different failures modify the filter residuals [44]. Uncertain parameters such as failure
magnitudes may also be estimated by modelling their effects in the signature failure

matrix.

Van Trees [40] shows the development of multiple GLR testing. In multiple
GLR testing, the system Kalman filter is designed based on the no-fail condition.
Matching filters are designed based on the expected failure conditions (including
no-fail). Each matching filter generates a GLR using MLE. Based on the GLRs,
central testing logic determines which matching filter best matches the real world.
Once a failure is detected, a corrective signal can be fed back to the Kalman filter
for adaptation to the failure. Further detail on GLR’s is presented by Willsky and
Jones [44,45]. See Vasquez [41,42] for an example of multiple GLR testing applied

to a navigation problem.

1.5.2.5 MMAE. The MMAE technique uses multiple Kalman filters
running in parallel to model the dynamics of the system (in this case the PLS) under
different conditions of failed or no-fail operation {1,20,22]. A separate Kalman filter

is designed for each failure condition and, during operation, the residuals are used
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to determine how well each filter models the current system state. The MMAE
technique is similar to multiple GLR testing in many ways, but differs in its structure
and decision making methods. Multiple GLR testing uses a variety of matching
filters to model failure characteristics of the residuals of a single Kalman filter. In
the MMAE algorithm, a probability of model accuracy ranging from zero to one
is computed for each elemental filter within the MMAE structure. Each separate
filter’s state estimates are scaled by the computed probabilities that each filter has
the correct model of the real world. These scaled state estimates are then added
together to produce a probability-weighted blending of the state estimates. This
blending technique has particular advantages when the real world system is not
exactly described by any one filter model, but exists in the parameter space between
discrete filter models. In such a situation the filter residuals of more than one of the
modeled conditions look reasonably valid. The weighted state estimates provided by
the MMAE algorithm are used to construct the navigation solution and to provide
system feedback. A major strength of the MMAE technique lies in its capacity for
rapid and valid adaptation. Multiple filters are running in parallel, making multiple
sets of residuals available at all times with which to decide which filter model looks

best (according to the “good” residual qualities {21,22] described in Section 1.5.2.3).

For robust operation, the bank of Kalman filters must be specified in such
a way that it spans the entire failure space of the application of interest. Rigor-
ous general convergence proofs for MMAE do not exist [7,9,43], but some limited
proofs have been established [4,5,22,24] and experience has shown that, as long as
the failure condition of the system remains within the span of the filter bank, the
MMAE technique is robust to that condition and will respond to it very quickly and

accurately.

1.5.83 Literature Review Conclusion. If it is to be used in actual opera-
tion, the proposed GPS-aided INS-based PLS will require rapid and accurate fault
detection and identification to establish the integrity of the PLS aid at all times.
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The error detection techniques presented in Section 1.5.2 are representative of the

methods available to accomplish the required fault detection.

The redundancy technique is not feasible for this application. Multiple GPS
receivers on a single aircraft would probably not be restrictive on the basis of size,
weight, or computational loading, but each receiver would be subject to the same
failure environment, e.g. interference/jamming or spoofing, and so nothing would

be gained by this redundancy.

Because of its speed and simplicity, chi-square testing has been widely used to
detect failures. However, chi-square testing alone has no ability to isolate failures
and so does not have much applicability to the integrity monitoring problem under
examination, if used alone. This testing method has been effectively used when

combined with another test to perform the identification function.

Multiple GLR testing and MMAE are both well suited to the FDI problem.
Both of these techniques are flexible enough to be applied to the complex GPS-aided
INS-based problem. This work uses the MMAE technique to perform the failure
detection and identification. Vasquez [41,42] has used a combination of chi-square
and GLR testing to detect and isolate failures in a GPS-aided INS-based navigation
system. Performance comparisons will be made, as appropriate, between the MMAE

FDI and GLR/chi-square FDI algorithms.

1.6 Scope

This work will be limited to the development of a multiple model adaptive
estimation (MMAE) architecture to provide the integrity monitoring previously de-
scribed. Comparison will also be made to the generalized likelihood ratio and chi-
square testing algorithms developed by Vasquez. The failure modes to be addressed
will be limited to the onset of interference/jamming and spoofing. Filters based
on ramp failures will not be included in the working MMAE filter bank. When a

ramp occurs, the elemental filter with the hypothesized constant parameter value
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that most closely matches the current ramp value will receive the highest probabil-
ity weighting. The ramp should be detectable as a growing trend in the MMAE’s
blended estimate of the affected parameter (and a gradual shift in the computed

probabilities of each hypothesized parameter being correct).

1.7 Methodology Overview

The research consisted first of studying the stochastic and dynamics modeling
of the GPS-aided INS-based navigation system, primarily as represented in the theses
of Gray [10], Britton [3], and Negast [30]. The model development work accomplished
in these previous AFIT theses was duplicated and then confirmed. Once the model
had been successfully duplicated, the research effort focused on failure detection
within the augmented system. The failure detection analysis of the multiple model
architecture used was accomplished using Multiple Model Simulation for Optimal
Filter Evaluation (MMSOFE [32]). MMSOFE allows for the simultaneous testing of
multiple extended (or linear) Kalman filter (EKF) models in an MMAE architecture.
MMSOFE is based on the MSOFE [28] program designed for the testing of single
Kalman filters. MSOFE was written in FORTRAN 77 [39] and its use involves

significant modification of up to 14 user-definable modules.

Comparison to the work of Vasquez is performed. Vasquez used general-
ized likelihood ratio (GLR) and chi-square testing schemes to detect and estimate
interference/jamming- and spoofing-induced failures in a GPS-aided INS-based sys-
tem. GLR techniques are based on residual monitoring and can be very effective.
The failure detection and identification results of Vasquez’ work are compared to

those generated using the MMAE-based FDI methods.
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1.8 Owerview of Thestis

Chapter 2 presents the theory used in this research. Kalman filter theory is
introduced, along with the basics of several FDI algorithms, including MMAE, GLR,

and chi-square testing.

Chapter 3 describes the navigation system’s parameters and operation through
an overall system description. Models for each of the PLS components, including
the INS (with barometric altimeter), GPS, DGPS, pseudolite, and radar altimeter,
are defined in detail. The failure models used to represent interference/jamming
and spoofing failures are developed, along with a description of the MMAE-based

methods that are used to detect those failures.

Results of the work done are shown in Chapter 4, including an analysis of the
FDI (and navigation guidance) performance observed. Chapter 5 summarizes the

research through conclusions and recommendations.
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2. Theory
2.1 Qwverview

This chapter presents the fundamental theory of the Kalman filter, and the
sampled-data Kalman filter equations used in this work are developed. The ex-
tended Kalman filter (EKF), a well-established ad hoc method based on the Kalman
filter, is used in estimation problems involving nonlinear dynamics and/or nonlinear
measurement models. The equations defining (EKF) are presented in this chapter,
along with a more detailed discussion of the MMAE, GLR, and chi-square failure
detection methods introduced in Chapter 1.

2.2 The Extended Kalman Filter

The EKF allows for nonlinear, time-varying system dynamics and/or measure-
ment vectors, as are found in this GPS/INS navigation problem. In simple linearized
Kalman filtering (LKF), the dynamics and/or measurement equations are linearized
through first-order perturbation techniques about a fixed nominal trajectory. The
LKF 1s the conceptual basis for the EKF. During operation the EKF is continually
relinearized about the most recent state estimate trajectory rather than about a

fixed nominal trajectory.

For the sampled data Kalman filter, let the system model be expressed as a

state equation of the form

x(t) = f[x(t),t] + G(t)w(t) (2.1)

where the state dynamics vector f[x(t),t] is a (possibly) nonlinear function of the

state vector x(t) and time ¢. Let w(¢) be a white Gaussian noise with mean

E[w(t)] = 0 (2.2)
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and noise strength Q(¢) defined by

Ewt)wl(t+1)] = Q(t)é(r) (2.3)

The discrete-time measurements, z(t;), are modeled as a (possibly) nonlinear
vector of functions of the state vector and time, h[x(%;),%], plus additive white

(Gaussian noise:

Z(ti) = h[X(tz‘),ti]-I-V(ti) (24)

where h{x(t;), ¢;] is the nonlinear observation vector and v(t;) is a zero-mean discrete-
time white Gaussian noise, independent of the dynamics driving noise w(¢) and

having covariance R(t;) defined by

E[V(ti)VT(tj)] _ { ];'(ti) ::OT' z, ;tltj (2.5)

The LKF is based on perturbation states about a nominal state trajectory x,(t)

satisfying x,(fo) = Xn, and
Xn(t) = fxa(t),1] (2.6)

using the same f[-, -] as in Equation (2.1). The nominal, noise-free measurements are

also based on the nominal states and are defined as
Zn(t:) = h[xa(t:), ] (2.7)

The perturbation states are found by subtracting the nominal states in Equation (2.6)

from the original states in Equation (2.1):

(x(t) = %a(8)] = f[x(t),t] — f[xa(t), 1] + G()W(?) (2.8)
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Equation (2.8) is approximated to first order through a truncated Taylor series ex-

pansion (letting 6x(t) be a first-order approximation to [x(t) — x,(1)]):
§x(t) = F[t;x(t)]6xa(t) + G(t)w(t) (2.9)

where 6x(t) are the perturbation states. The definitions for G(t) and w(t) are
unchanged, and the new linearized dynamics matrix F[t;x,(¢)] is found by taking
partial derivatives of f[x(t),t] with respect to x(¢) and evaluated at the nominal

values for the trajectory x,(¢):

Flt ()] = Zaiht (2.10)

x = xn(t)

The discrete-time perturbation measurements are similarly approximated to first

order from the measurement difference equation
6z(t;) = z(ti) — zn(t;) = hx(t;),t:] — h[x.(&), ] + v(%:) (2.11)

yielding the perturbation form (letting 6z(¢;) be a first-order approximation to

[2(t:) — zn(:)):
§a(ti) = Hlt; x(t:)]6%n(t:) + v(£) (2.12)

The same partial derivative methods used to derive the linearized state dynamics

matrix F[t; x,(t)] are used again to derive the linearized observation matrix:

Hti (1] = 2oeib ] (2.13)

X = xn(t,‘)

Because the LKF generates error state estimates, g;((t), they must be added to the

nominal states to provide whole state estimates X(¢) in the form

R(t) = xa(t) + 8x(2) (2.14)
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If the nominal and the “true” trajectories differ too greatly, a linearized Kalman
filter will yield erroneous state estimates because the condition for neglecting higher
order terms of the Taylor series expansion is violated. The EKF will be formed by
linearizing about the most recent state estimate X rather than about the nominal
trajectory Xy, as is done in the LKF. The following sampled data EKF equations use
the notation t|¢; to represent the value of a given variable at time ¢, conditioned on the
measurements taken through time ;. Also, ;™ represents the value after propagation
but prior to the measurement update at sample time #;, and ¢;* corresponds to the
value after the measurement update. The state estimates X(t|t;) and covariance
values P(t|t;) are propagated from ¢; to t;11 by solving the following differential
equations:

%(tt:) = f[R(t]E:), 1] (2.15)

P(tlt) = FLERUG)PEL) + PeE)FTE RG] + GOQEGT(H)  (2.16)

where
N of[x(t),1
Flu(ie)) = Zoackd (2.17)
x = X(t|t:)
and initial conditions are given by:
(Lt = () (2.18)
P(tlt) = P (2.19)

The discrete-time measurements are processed in the EKF through the update equa-

tions:
K(t:) = P(ti_)HT[tz’;i(ti')]{H[ti;ﬁ(ti_)]P(ti_)HT[ti;?(ti‘)]+R(tz’)}_1 (2.20)

R(t:7) = R(t7) + K(t:) {z: — h[x(t:), 1]} (2.21)

Pt:T) = P(t,7) — K(t:)H[t; x(¢,7)]P(t:7) (2.22)
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where

P(tz_) = P(ti|ti_1) and i(t:) = f((ti|ti_1) (223)

as produced by the most recent propagation cycle. The variable z; represents the

actual realization of the measurement z(t;), H[t;; Z(¢;)] is given by:

8h[X(ti), ti]

H[t;%(t;7)] = I

(2.24)
X = X(t;7)
and K(t;) is the discrete-time Kalman filter gain. Recall from the previous page that,
for the EKF, the measurement and dynamics vectors are calculated about the last

state estimate X(¢,7) and the state trajectory x(t|t;), rather than about the nominal.

Before proceeding to a discussion of failure detection and identification (FDI)
techniques, the reader should make note of Equation (2.21). The term {z; — h{X(¢;7), %]}
on the right hand side of Equation (2.21) is called the measurement residual. At
each sample time ¢;, the residual is the difference between the actual measurement of
the real world z(¢;) and the filter’s best prediction of what the measurement should
have been before it arrived, h[X(t;7),;]. The filter’s prediction is based on its model
of the system, so the characteristics of the measurement residual are an indication
of how well the filter’s model currently matches the real world. The residuals from
a filter (the k™ filter of a number of possible filters) having the correct model will
be (for a linear KF, or to first order for an EKF) white, Gaussian, zero-mean, and
have covariance [Hy(t;)Px(t;")Hi () + Ri(t;)]. This information contained in the

residual is the basis of the FDI techniques discussed in the next section.

2.8 Failure Detection

The MMAE and the GLR/chi-square methods of FDI [22,40] are residual-
based techniques built upon the Kalman filter just developed in Section 2.2. The
basic ideas upon which these FDI methods are based were discussed in Section 1.5.2.

This section presents a theoretical discussion of the MMAE, GLR, and chi-square
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algorithms. See VanTrees [40] for a more complete development of the GLR. and chi-
square methods. Maybeck [22] presents a clear and rigorous development of MMAE
theory.

2.3.1 Multiple Model Adaptive Estimation.  Multiple Model Adaptive Esti-
mation (MMAE) can provide simultaneous state and parameter estimation. MMAE
is composed of multiple “elemental” Kalman filters running in parallel, each using
an identical deterministic input and measurement environment. Each of the individ-
ual elemental filters may model a different set of system parameter values based on
known possible operating conditions, or may model some possible failure condition
such as greatly increased measurement noise covariance R(%;), which might represent
the effects of GPS interference/jamming. The magnitude of a failure can also be esti-
mated by using multiple elemental filters with different assumed failure magnitudes.
The residuals from each filter are used to calculate the conditional probabilities that
each of the filters has the most correct model. Uncertain parameters are estimated
in this way because specific parameter values are associated with each filter. The
conditional probabilities, also referred to as hypothesis conditional probabilities, will
be used as weights for blending the state estimates from the elemental filters to
produce the final blended MMAE state estimates. See Figure 2.1 for a graphical
representation of the MMAE algorithm.

The conditional probability p(t;) for the k** elemental filter, £ = 1,2,..., K

is determined by:

fz(ti)|a,z(ti_1)(zi|ak> Z;_1)pr(ti-1)
SR Fatlazo) (Zilag, Zioy)pi(ticy)

pe(ts) = (2.25)

where, for this development, the a; parameters may represent measurement bias
magnitudes and/or measurement noise covariance values. The numerator of Equa-
tion (2.25) is the product of two terms. The first, py(t;—1), is merely the most recent

value of the conditional probability for the k%" elemental filter, making this equation
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Figure 2.1 Multiple Model Adaptive Estimation

iterative. All K numerator terms for the K elemental filters at #;_; must be available
before the denominator and consequently the k** conditional probability at the cur-
rent time, t;, can be calculated. The first numerator term is the probability density
function of the current measurements, conditioned on both the assumed parameter
values and the observed past measurements. This probability density function is

computed by:

m 1
faia st @ilanzie) = 1/(27) 72 |Ak(t:)|2exp {-}

(2.26)
{} = {-Ll@)AF t)re(t:)}

where m is the measurement vector dimension, and the filter residual is given (for

linear filters)by:
rr(t;) = [z(t:) — He(t:)Xe(ti7)] (2.27)
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and
rp(t:) = {[2(t) — he[&e(£7), (1))} (2.28)

for the more general extended Kalman filters, and where the residual covariance is

computed by the k** elemental filter as:

Ar(t) = [Hi(t:)Py(t7)He" (8) + Ra(ti)] (2.29)

The k** filter residual, ry(t;), is dependent upon the current measurement, z(;), the
measurement matrix, Hy(¢;) (or the measurement function hy(:,?;) for an EKF), and
the state estimate prior to the %" measurement, X(¢;7). The k' elemental filter’s
state estimation error covariance matrix before the i** measurement, Px(¢;), the
measurement matrix, and the observation noise covariance matrix, Ry(¢;), are used
to construct the residual covariance for each filter. The Kalman filter equations and

notation were discussed in Section 2.2.

If the residuals in the k™ filter display a mean of zero and the correspond-
ing filter-computed residual covariance Ag(%;), the exponential term {-} in Equa-
tion (2.26) is approximately equal to —Z, where m is the dimension of z(t;) and
r(t;). However, if the residuals are much bigger than anticipated due to the wrong
parameter hypothesis, the exponential term {-} in Equation 2.26 is a much larger
negative number (A}’ is positive definite), so pj decreases exponentially. The de-
nominator of Equation (2.25) represents the sum of the numerator terms from each
elemental filter computed at time #;. This scales the numerator to ensure that the
sum of the p;’s is always one. However, a difficulty arises if the conditional probabil-
ity of a state estimate were to become zero. In this case the conditional probability,
pr, becomes identically equal to zero for all time thereafter. Once equal to zero,
the iterative form of Equation (2.25) locks that py at a zero value for all subsequent

calculations, even if that filter begins to produce good state estimates. To avoid this




problem, a lower bound (threshold) should be set on each p, to prevent such a zero

lock-in condition [22].

The state estimates from each filter, Xy, are then scaled by the corresponding
weighting factor p;. These weighted state estimates are summed for all K filters,

resulting in the Bayesian blended state vector estimate:

S(tt) = émtﬁ)-pk(m (2.30)

The covariance, P(¢;7), of the blended solution is given by [22]:

P(t*) = épk(ti) {Pe(tt) + [Ru(tt) - MRt %N} (2.31)

The parameter estimates, aj, are calculated by scaling the assumed parameter values
from each elemental filter by the corresponding weighting factor, pg, in the same
manner as for the state estimates. The weighted estimates of all K filters are summed

according to the relationship:

K
at:) = D ak-pe(ts) (2.32)
k=1

This Bayesian form of adaptive estimation is depicted in Figure 2.1.

As may be inferred from the preceding presentation, failure detection and iden-
tification using MMAE becomes virtually automatic once the estimator has been
developed. FDI is accomplished by observing the conditional probabilities, ps, of
the elemental filters. The filter with the highest probability pi is based on the model
which most closely matches the real world (truth model in the case of simulations).
Most likely the true parameter value will not exactly match that modeled in any one
of the elemental filters, so the unknown parameters will be estimated via blending

in a manner similar to the MMAE state estimation.
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This thesis research is directly concerned with detecting and isolating failures
in the form of GPS interference/jamming or spoofing. Several Kalman filters are
used which differ only by the assumed measurement noise variance or measurement
signal bias magnitude. Measurement signal biases model measurement jumps and/or
ramps (through the MMAE blending just discussed) as might result from intentional
spoofing. Increased measurement noise variance would model interference/jamming-
type real world measurement noise. Nominally, for the case of measurement signal
biases, two filters with different positive bias magnitudes, a matched set with neg-
ative magnitudes, and one filter with a zero bias magnitude can be assumed (i.e.,
K =5, where K is the number of elemental Kalman filters). Using variances of mea-
surement noise instead of biases in another set of elemental filters could similarly
model interference/jamming noise. As was stated in Section 1.6, there is no need to
include elemental filters based on a ramp failure of an assumed slope and/or time of
onset. When a ramp occurs, the elemental filter with the bias value that most closely
matches the current ramp value will receive the highest probability weighting. The
ramp should be observed as a growing trend in the MMAE’s blended estimate of the

measurement bias.

2.3.2 Moving-Bank MMAE. The MMAE algorithm propagates multiple
filters forward in time, continually selecting the filter, or weighted combination of
filters, that has the best model of the real world. Often, the possible parameter
space is so large that completely discretizing it requires many more filter hypothe-
ses than can realistically be run in parallel. In this case, a small group of filters,
whose parameter assumptions are in the close neighborhood of the current parame-
ter estimate, are chosen to be active at one given time. If the estimated parameter
moves significantly, the bank of active filters is moved to be centered around the new

parameter estimate. This algorithm is called a moving-bank MMAE.
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2.3.8 Generalized Likelihood Ratio Testing.  The primary goal of GLR is to
define a likelihood function I(t;, ) that, when compared to a threshold, will identify
the onset of a failure such as interference/jamming or spoofing. The GLR algorithm

is depicted in Figure 2.2. Multiple hypotheses are established with a Kalman filter
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Figure 2.2 Multiple GLR Testing

based on hypothesis Hy (no failure) and matching filters based on hypothesis Hy, (the
k" failure has occurred). The matching filters do not provide state estimation but
are designed for failure detection by assuming failures in the system to be modelled
as some variation in the actual measurement beyond those variations caused by the
dynamics of the system. Each matching filter is designed to inject the kind of residual
modification that would actually be experienced in the system Kalman filter if that
failure (modelled by H;) had actually occurred. The failure vector d(¢;) is m—by—1
where m is the number of measurements. Non-failed elements are indicated in d(¢;)
as zeros, while 1’s in the failure vector correspond to a measurement device assumed
to be induced with a failure. The arguments of the likelihood function introduced
above are t; and 6. As may be seen in Figure 2.3, the variable t; represents the time
of failure onset, while ¢, represents the current time, and ¢o_x the time of the trailing

edge, termed the “beginning”, of the GLR search window. As the search window
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proceeds forward in time, the failure function n(t;,6) is either 1 or 0 depending on
whether the detected failure is currently before or after the 8 index value in the GLR
algorithm’s search window. In general, § takes on each index value within the search
window at each time step, so that the failure may be detected at the earliest possible
time after its onset. In order to simplify the GLR algorithm, 6 is permanently set to
N, so the onset of a failure will not be detected until it reaches the beginning of the
search window. Riggins [35] showed that this simplification gives up comparatively
little identification performance while significantly reducing the computational load

required for implementation.

Under nominal conditions, the Kalman filter residuals r%(%;) are:
r’(t;)) = z; —h[X(t),t] (2.33)
and the residuals can be expressed for each hypothesis (matching filter) as
Ho : r(t;) = r°(t) Hi @ r(t) = r°(t) + m(¢,0)v (2.34)

For a Kalman filter successfully tracking the true states, the nominal no-failure resid-
ual r(¢;) will appear as zero-mean white Gaussian noise of covariance

[Hk(ti)Pk(ti‘)HkT(ti) + Ry (¢;)]- When a failure is induced on the measurements, a
signal m(t;,0)v will also be present in the residuals, where v is the unknown mag-
nitude and m(t;,0) will be presented momentarily. The goal of the GLR algorithm

is to identify this signal by recognizing variations in the residuals from their nor-
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mal unfailed values. The GLR tests are particularly good at detecting jumps in the
residuals, with the key being how closely the matching filters model actual failures.
The GLR algorithm is a function of overall system dynamics and behavior (®, H,
and Kalman filter gain K); this is shown mathematically below. The failure residual

offset m(t;, 0) is found through
m(t;,0) = H(t)y(ti,0) + d(t:)n(t;, 6) (2.35)
where the recursive failure quantity y(tis1,0) is given by
Y(tisn,0) = ®(tiys, )T - K(E)HE)y (L, 0) — ®(tigr, t)K () d(E:)n(t:, 0) (2.36)

and ®(t;11,%;) is the state transition matrix for the dynamic system model’s prop-
agation from sample time ¢; to time ¢;1;. If the failure is assumed to occur at the
beginning of the GLR search window (i.e. n(t;,0) = 1 for all¢;), the above equations

can be simplified to

m(t;) = H(t)y(t) +d(t:) (2.37)
Y(ti41,0) = @(tigr, t)[I - KE)H(L)]y (2, 0) — B(tia, 1)K ()d(L:)  (2.38)

The consequence of this simplification is a delay in detecting a failure because it is not
realized until it reaches the beginning of the GLR search window. The combination of
the Kalman filter outputs and the matching filter model will determine the magnitude

of the likelihood function defined as:

1(t:;,0) = ST(t:,0)C7(t;,0)S(t:,0) (2.39)
where .
S(t6) = Yo mT (L, 0)A7 (1;)r(t) (2.40)
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given

A(t;) = H(t;)P(;7)H(E) + R(t;) (2.42)

and the maximum likelihood estimate of the unknown magnitude of the failure, v,
is found by
S(t;,0)

The residual covariance A(t;) and the residuals are combined with Equations (2.35)
and (2.36) or Equations (2.37) and (2.38) to give a linear combination of the residuals
S(t;,0) and a deterministic value C(t;,0) defined in Equations (2.40) and (2.41)

above. Finally, a decision rule based on a threshold, ¢, would be

I(t;,0) > € = Declare FAILURE

(2.44)
[(t;,0) < € = Declare NO FAILURE

2.3.4 Chi-Square Testing. A chi-square test is based on the Kalman filter
residuals r(¢;) which are zero-mean and white with known residual covariance A(t;)
(under nominal, hypothesized conditions). The chi-square random variable X (1) is

given by
k

X(t) = 30 rT(t)AT(t)r() (2.45)

j=k-N+1
with N being the size of a sliding detection window. Notice that the system dynamics
are not included in Equation (2.45) and that only one failure hypothesis is available.
This agrees with the discussion in Section 1.5.2.3 which stated that the chi-square

test is very simple and can only be used to detect, not identify, failures. A detection

rule based on an established threshold € would be

X(tx) > € = Declare FAILURE

(2.46)
X(tx) < € = Declare NO FAILURE
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2.4 Summary

This chapter provides the theoretical basis for the remaining chapters. MMAE
will be used for FDI in this work. The GLR and chi-square algorithms are discussed
here because they will be used as a benchmark in comparing the MMAE FDI re-
sults to those achieved by Vasquez [41,42] using more traditional GLR/chi-square
FDI. The theoretical developments of this chapter closely follow those presented by
Vasquez [41,42] and Nielsen [31].
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3. Methodology

3.1 Overview

This chapter introduces the computer software and simulation techniques used
in pursuing this research effort. An overall description of the integrated system is
given, followed by detailed state and measurement models for each of the navigation
subsystems used. The specific multiple model filter structure used to detect failures
is shown. Finally, the simulation approach and research goals are reviewed prior to

the presentation of the results in Chapter 4.

3.2 Overall System Description

The main elements of the PLS being tested for failures are the INS and the
GPS or DGPS. The barometric altimeter, radar altimeter, and ground-based pseu-
dolite also provide measurements to the Kalman filter. The following measurements
are available: four satellite vehicle (SV) pseudoranges, altitude from the baromet-
ric altimeter, one surveyed-point (pseudolite) range measurement (optionally), and
height above ground level from the radar altimeter (optionally). The truth model

used to represent the real world consists of 62 states, while the Kalman filter model

is made up of 13 states.

A block diagram representing the system PLS configuration is shown in Fig-
ure 3.1. The true aircraft position is generated by the trajectory profile generator
PROFGEN [27] and provided to each navigation system. The GPS satellite vehicle
(SV) positions are given by actual satellite data recorded on 4 May 1991 and are
combined with the true aircraft position to obtain true ranges, which are modified
with noise to provide pseudoranges measurements for use by the GPS. Each navi-
gation system generates perturbations from the true range and the final difference
measurements are then formed by subtracting the GPS measured ranges from their

corresponding INS-calculated ranges. The EKF equations propagate the PLS error
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INS errors
2Hz
Radar Output
Altimeter

Figure 3.1 Overall PLS Block Diagram

states and use the measurements to calibrate its state estimates. Finally, these state

estimates are used to correct the INS-indicated position at each sample time.

3.3 PLS Component Model Descriptions

The truth model consists of 39 INS states, 30 GPS or 22 DGPS states, and a
single pseudolite state (optionally). The filter model consists of 11 INS states and
two GPS or DGPS states. The following sections will provide the details of these

models and the bases for their selection.
3.3.1 INS Models.

3.8.1.1 The INS Truth Model.  This section presents the truth model
used for the INS. The INS is a strapped-down wander azimuth system based on
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the Litton LN-93. The manufacturer, Litton developed a 93-state error model [16]

describing the error characteristics of the LN-93. The error states 6x used in the full

model may be separated into 6 categories.

ox = |6xT6xT6xToxToxlox? ! (3.1)

where 6x is a 93 x 1 column vector and

6X1

6)(2

6X4

6X5

6X6

represents the “general” error vector containing 13 position, velocity, attitude,
and vertical channel errors; the first nine states are those of the standard Pinson

model of INS error characteristics.

consists of 16 gyro, accelerometer, and baro-altimeter exponentially time-correlated
errors, and “trend” states. These states are modeled as first order Gauss-

Markov processes in the truth model.

represents gyro bias errors. These 18 states are modeled as random constants

in the truth model.

is composed of accelerometer bias error states. These 22 states are modeled in

the same manner as the gyro bias states.

depicts accelerometer and initial thermal transients. The 6 thermal transient

states are first-order Gauss-Markov processes in the truth model.

models gyro compliance errors. These 18 error states are modeled as biases in

the truth model.
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The truth model state space differential equation is given by

4 . 3\ [~ I { 3\ { A
6%, Fi;. Fiu Fizs Fiu Fi5 Fyg 0% Wi
5).(2 0 Fzz 0 0 0 0 6X2 Wy
6X3 0 0 0 0 0 0 x5 0

) = SRR (3.2)

X4 0 0 0 0 0 0 x4 0
5)'(5 0 0 0 0 F55 0 (5X5 0

{ 6Xg ) | (1] 0 0 0 0 0 1\ bXg ) { 0 )

A full description of the submatrices for this error model differential equation is given
in Appendix B. This 93-state error model is a highly accurate LN-93 representation,
but the high dimensionality of the state equation makes the model prohibitively
CPU-intensive (computationally, and in terms of storage) for projects examining a
large number of problem variations. The work of Negast at AFIT addressed the
reduction of the INS error-state model [30] while preserving enough fidelity to be

considered a viable truth model.

The reduced-order model to be used as the truth model in this research is

defined in Equation (3.3):

¢ 3\ 1 ¢ 1 ¢ 3

0%y F('red)ll F(red)12 F('red)13 F('red)14 0x3 Wi
ox 0 F. 0 0 ox w

< 2 [ _ (red)22 2 L 2 (3.3)
6)'(3 0 0 0 0 6X3 0

L 6X4 J | o 0 0 0 11 6X4 ) | 0 )

This model was shown by Negast [30] to be sufficient to represent the 93-state model
accurately. Note that the submatrix indices used in representing the 39-state model
are not identical to those used in outlining the 93-state INS error model. The

relationship between the two models is given in Tables A.5 and A.6 of Appendix A.
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3.3.1.2 The INS Filter Design Model. ~ The INS filter design model is
the model which would be used by the EKF operating on an aircraft using the PLS
described here. The limited computational power available and the requirement for
real-time processing motivates making the dimension of the filter model as small as
possible. The INS filter model is comprised of 11 states (the first nine being the
standard Pinson error model states): 6 misalignment errors, 3 velocity biases, and
2 states for barometric stabilization. Table A.9 shows the 11 INS states used in the
filter model.

3.8.1.3 The INS Measurement Model.  The only measurement model
associated with INS is that for barometric altimeter aiding. The altimeter aiding is
used to compensate for the instability inherent in the vertical channel of the INS.
The altimeter output Altg,,, is modeled as the sum of the true altitude h;, the total
error in the barometric altimeter éhp, and a random measurement noise v. Similarly,
the INS calculated altitude Alt;ng i1s the sum of the true altitude and the INS error
in vehicle altitude above the reference ellipsoid, 6h. A difference measurement is

used to eliminate the unknown true altitude, A4, resulting in Equation (3.4):

62 = AltINS - AltBa,ro
= [hs+ 6h] = [he + 6hp — 0] (3.4)
= 6h—6hg+v

INS error in vehicle altitude above the reference ellipsoid, 6, and total barometric
altimeter correlated error, 6hp, are states 10 and 11 in the 11- and 39-state INS

models.

3.3.2 The Radar Altimeter Model.  The measurement equation of the radar
altimeter is based on the difference between the INS-predicted altitude Alt;ys and



the radar altimeter predicted altitude Altgq:

bz = Altiys — Altga
= [hi+ 6h] — [hy — 0] (3:5)
= bh+v

The errors in the radar altimeter are modeled as white noise with no time-correlated
component. This may be a rather crude model, but should be sufficient to demon-
strate performance trends. Note that no additional states are required with the

addition of this radar altimeter model.

The radar altimeter measurement noise covariance Rgq; 1s a function of aircraft
altitude above ground level (AGL) and will be the same in the truth and filter models.

The radar altimeter noise covariance from [11] is altitude-dependent and is given by
Rpa = {[0.01]% % [AGLyruc]*} +0.25 f12 (3.6)

3.3.83 GPS Models.  The GPS (also DGPS) generates user position based
on “known” ranges to satellites at “kmown” positions. The satellites themselves
transmit their position in space (in the form of ephemeris data) as accurately as
it is known and the exact time (also a best estimate) at which the transmission is
sent. The actual range information is calculated based on knowledge of the satellite
position and the finite propagation speed of the electromagnetic radiation emitted

from the satellite.

3.3.83.1 The GPS Truth Model. The GPS model used in this work
was developed by past researchers at AFIT [10,30,41,42]. The dynamics and mea-
surement equations for the full 30-state truth model are presented in this section

and a tabular listing of the states is shown in Table A.7 of Appendix A.
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Five types of error sources are modeled in the GPS truth state equations. Two
of the five error sources are insignificant when differential corrections are applied
(DGPS). The first error type, user clock error, is common to all SV’s. The remaining
four error types are unique to each SV. The first two states represent user clock errors

and are modeled as:

TUclk, 01 TUclk,

= (3.7)
TUclky, 0 0 TUclky,
where
Tuar, = range equivalent of user clock bias
Tyck, = velocity equivalent of user clock drift

The initial state estimates and covariances for these states were chosen to be consis-

tent with previous AFIT research [3,10,30,41,42] and are:

Zu ek, (to) _ 0 (3.8)
Zyeik,, (to) 0
and
9.0 x 10 ¢ 0
Pucik, Uclky, (to) = (3.9)
0 9.0 x 10'° ft?/sec?

Because these error sources are a function of the user equipment, they are common
to all the SV’s. Recall that each of the remaining error types is specific to each SV,
denoted by a subscript j.

The second error type is the code loop error 6 Ry;. The code loop is part of the
user equipment shared by all the SV’s, but its error magnitude is relative to each
SV. The work of Negast [30] shows that this error source may be disregarded in the
DGPS model. The third GPS error type is the result of atmospheric interference
with the EM signals broadcast by each SV, specifically, ionospheric and tropospheric
delay, 0 Rion,, and 6 Ryyop,. The code loop error, tropospheric delay, and ionospheric
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delay are all modeled as first-order Markov processes with time constants shown
in Equation (3.10). All three are driven by zero-mean white Gaussian noise with
strength shown in Equation (3.13). The fourth error source is due to inaccuracies
of the clocks on board the individual SV’s, § Rscx;. Like code loop error, this error
source is also removed when differential corrections are applied. The final GPS error
source is based on line-of-sight errors between the SV’s and the receiver, éz,,, éy.,,
and éz,;. The DGPS models for these states are shown later in Equations (3.24) -
(3.27). Note that, if DGPS were used exclusively in this research, the states for code
loop error and satellite clock error could be removed completely. The modifications

required for DGPS are summarized in Section 3.3.3.4.

(6Re, | [-1 0o o oo0o0o0]|[ sRy | [ wa ]
8 Rirop, 0 —g5 0 00 0 0| 8Ruop, Wirop
8 Rion, 0 0 -5 00 0 0| 6Rion, Wiom
{ 6Rsar, ¢ = | 0 0 0 000 0|3 6Rseti, (+9 0 ¢
8, 0 0 0 0000 bz, 0
8y, 0 0 0 0000 8Ys, 0
bz, J L0 0 0 000 0| &z 0|
(3.10)
with initial covariances given by
[ 025 /2 0 0 0 0 0 0 |
0 1.0f2 0 0 0 0 0
0 0 LOf 0 0 0 0
Peps = 0 0 0 25 ft? 0 0 0 (3.11)
0 0 0 0 25f2 0 0
0 0 0 0 0 25ft2 0
|0 0 0 0 0 0 25 ft?

3-8




and noise means and covariances given by

Elwgps(t)Weps(t+7)] =

E[weps(t)] = 0 (3.12)
05 0 0 000 0]
0 0004 0 0000
0 0 00040000
0 0 0 00 0 0| ft*/sec-8(r) (3.13)
O 0 0 0000
O 0 0 0000
0 0 0 0000

The full 30-state GPS dynamics matrix is not shown explicitly but may be easily

constructed by augmenting Equation (3.7) and four copies (one for each SV) of

Equation (3.10).

3.3.8.2 The GPS Filter Design Model. ~ Research has shown [26, 30]

that the two user clock error states provide a sufficient filter model for GPS. The

primary argument is that the errors modeled for the 28 other GPS (20 other DGPS)

states (assuming four SV’s) are small when compared to the user clock errors which

are common to all SV’s. By increasing the dynamics driving noise and re-tuning the

filter, the overall performance of the integrated navigation system can be maintained.

The GPS filter model is given by Equation (3.7) plus noise:

Lyc 01 TUc c
TUclk, _ vk, | Welk, (3.14)
TUclkgy 00 TUclkg, Welkg,

Because simulations were only performed using DGPS, and not GPS, no experimentally-

determined @ tuning values for GPS are shown.
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3.8.3.3 The GPS Measurement Model. The pseudorange measure-
ments available to the GPS receiver are the sum of the true range, several error

sources, and a random noise:
RGPSJ- = Rt]' + 5Rcloopj + 6Rtropj + 6Rionj + 6RSclkj + (SRUcIk - (315)

or, after differential corrections are applied:

Raps; = Ri; + 0Rirop; + 0Rion; + 6 Rucir — v; (3.16)

where

Rgps; = GPS pseudorange measurement, from SV; to user

R, = true range, from SV; to user

6R.00p; = range error due to code loop error

0Ri0p, = range error due to tropospheric delay

6R;.;n; = range error due to ionospheric delay

6Rsqr; = range error due to SV;j clock error

6Ryqgr = range error due to user clock error

v; = zero — mean white Gaussian measurement noise

Because R; is not available to the filter, a substitution will be make to eliminate this

term. First, the satellite position vector Xs and the user position vector Xy are

defined as:

T, Ty
Xp =S g ¢, Xs =14, (3.17)
Zu Zs

where the superscript e denotes coordinates in the earth-centered earth-fixed (ECEF)
frame. The pseudorange from the user to the satellites calculated by the INS, Rins,

is the difference between the PLS-calculated user position, Xy, and the satellite
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position given by the ephemeris data, Xg:

T rs
Rins = Xv—=Xsl = { wu ¢ — 4 us (3.18)
2y zZ8
An equivalent form of Equation (3.18) is:
Rins = \/(wU —z8)? + (yu — ys)? + (2u — 2s)? (3.19)

With perturbations representing errors in Xy and Xg, Equation (3.19) can be written

in terms of the true range and a truncated first-order Taylor series:

9Rins(Xs,Xy) .
Rt + 8Xg \(XS,XU)nom 6XS (3.20)
4 FinsXsXy) -6Xy

Xy ’ Xs,xU)nom

Rins =

The solution for Ryys is found by substituting Equation (3.19) into Equation (3.20)

and evaluating the partial derivatives to get:

Ravs = B — [sgses] oo — [gizie] oo [fis] 0 )
+[TR;]:S|] 6$S+[i§;\?g|] 5ys+[|R1Ns|] +b25

Finally, the truth model GPS pseudorange difference measurement is given as:

0z = Rins— Rgps
= - [l oo - [t - ow - g o0
+[TR;1:SI] 6$5+[i’1§;\§/§|] 6ys+[|R1N |] 625

- 6Rcloop - 5Rtrop - 5]'21'011 - 6RSclk - 5RUclk +v

The user position errors in Equation (3.22) can be derived from the first three (posi-

tion error) states of the filter or truth model using an orthogonal transformation [2].
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The filter design measurement model for the GPS measurement does not con-
tain terms for the errors due to code loop variations, atmospheric delays, satellite
clock deviations, or errors in ephemeris-given satellite position. The filter GPS mea-

surement model can be written as:

3.3.3.4 The DGPS Truth Model.  Differential GPS (DGPS) is mod-
elled very similarly to GPS. The justifications for the differences were given above
in Sections 3.3.3.1 and 3.3.3.3 at the points during the GPS development where the
differences were relevant. This section will present the mathematical specifics of
DGPS as they differ from those of GPS. A tabular listing of the 22 DGPS states is
shown in Table A.8 of Appendix A.

The error sources for DGPS are identical to those for GPS, with the noted
exceptions that the code loop and satellite clock errors may be disregarded when

using differential corrections. The differential equation for the DGPS error states

becomes:
(6Rior, | [ =2 0 00 0] [ 6Ruu | [ wirer |
8 Rion, 0 —525 0 0 0| 8Rion, Wion
bz, [ = 0 0 00 0|y bz, ¢+q 0 o (3.24)
8y, 0 0 000 8ys, 0
| bz, | 0 0 000 | & | | O |
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with initial covariances (note the differences from Equation (3.11)) given by

1062 0 0 0 0o |
0 1052 0 0 0
Ppeps = 0 0 3B ft2 0 0 (3.25)
0 0 0 35F2 0
0 0 0 0 358

and noise means and strengths (note the differences between Equation (3.13)) given

by

E[wpars(t)] = 0 (3.26)
(0000 0 00 0]
0 0.0004 0 0 0
E[wpeps(t)Wheps(t +7)] = 0 0 0 0 0| ft’/sec-6(r) (3.27)
0 0 000
0 0 o000

3.3.3.5 The DGPS Filter Design Model.  The filter design model for
DGPS is identical to that for GPS. The only difference lies in the gains used to
tune the filter when using DGPS. The filter @ values used to tune the filters in this

research may be found in Appendix C.

3.3.3.6 The DGPS Measurement Model.  After differential corrections

are applied, the measurement equation is

RDGPSj = Rt_,' + 5Rt'rop_,- + 5Rionj + 6RUclk — Yj (328)

as noted in Section 3.3.3.3. After noting the removal of the code loop and satellite
clock error sources in Equation (3.15), leaving Equation (3.28), the remainder of the

DGPS measurement model development is identical to that for GPS.
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3.83.4 The Pseudolite Model.  Pseudolite measurements are treated as mea-
surements from a 5 GPS satellite, with the following three exceptions in the truth

model.

e Transmissions from a pseudolite do not pass through the ionosphere, so there
is no ionospheric delay error term for a pseudolite measurement. The tropo-

spheric delay error term is still included.

e The pseudolite is assumed to be located at a surveyed position, so there is no

uncertainty in the “SV” position for a pseudolite measurement.

e There is assumed to be no bias or drift errors in the “satellite” clock for a

pseudolite measurement.

As may be inferred from the list above, as far as the filter is concerned, there is no

difference between a satellite measurement and the pseudolite measurement.

3.4 Failure Models

This section discusses the methods used to model failures in the MMSOFE
simulations. For each failure type to be simulated, the corresponding MMAE-based

FDI methods used to detect that failures are also discussed.

3.4.1 Simulation Failure Models.  Seven variations of three different failure
types are modeled in simulation. The seven failure cases are presented with actual
values in Table 3.1. (The contents of Table 3.1 will be discussed in detail later in

this section.) A short description of each failure type follows:

1. Interference/Jamming — Interference is modeled as a sudden increase in the
measurement noise associated with all four SV’s, resulting in lower carrier-
to-noise ratios, C /Ny, in the GPS receiver. This failure is induced in all SV
measurements because interference/jamming is assumed to occur at the re-

ceiver, which will affect all four (five, if the pseudolite is included) channels
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simultaneously. The interference noise, R;,;, is added to the truth model mea-
surements only. Specific magnitudes of interference will not be considered as in
previous work at AFIT [41,42]; rather, real-world interference will be allowed
to take on selected values within the interference parameter space spanned by
the MMAE filter bank. Emphasis will be placed on determining (demonstrat-
ing) the capability of MMAE to detect and identify interference failures of
unspecified magnitude quickly.

GPS jamming is used to refer to the total loss of useful GPS transmissions
due to very large rf interference. A GPS jamming failure is well-modelled
(and much more easily modelled) via very large measurement noise. When
the MMAE algorithm detects very large real-world measurement noise R then
the corresponding measurements will be very lightly weighted by the elemental
Kalman filters; the effect is essentially the same as if those measurements were
never received, hence the use of the term “interference/jamming” throughout

this report.

. Spoofing —~ Spoofing is modeled as a bias added to the measurements associated
with all GPS SV’s. The addition of the bias (if it is undetected) has the effect of
placing a bias on the position solution of the GPS system. Specific magnitudes
of spoofing failures will not be calculated to produce some effective aircraft
position error, according to a single strategy of spoofing, as the emphasis of
this work is an assessment of the FDI capabilities of MMAE. Instead, a range of
possible spoof magnitudes will be investigated to exercise the MMAE algorithm
fully. Two models of spoofing bias addition are used and will be discussed

shortly.

In this research, spoofing is modelled as a uniform bias addition to each of
GPS (and pseudolite) pseudorange. Spoofing failures modelled in this way
result in (mainly) vertical changes in the user’s GPS navigation solution (see

Figure 3.2). A better model (more representative of probable malignant spoof-
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ing techniques) of spoofing would be the addition of calculated biases, specific
to each SV, designed to yield a desired net change in the user’s navigation
solution; such a real-world spoof would probably be designed to produce a
horizontal shift in the navigation solution so that unaffected sensors (baro and
radar altimeters) could not be used to eliminate the error over several measure-
ment updates. Although not an entirely accurate model of probable real-world
spoofing changes, the uniform bias model is much more easily implemented in
software and does correctly yields cohesive changes in the user’s GPS naviga-
tion solution which effectively test the spoofing FDI performance of the MMAE

algorithm.
Line of constant range to SV2 Line of constant range to SV1
(plane wave approx.) (plane wave approx.)
~plusa spoofbiasQ (Ay oof bias

SV1 sv2

Spoof-caused vertical
position error

Figure 3.2 Uniform-bias spoofing model: vertical effect

(a) Spoofing Model A — A bias is added suddenly in time to the measure-
ments associated with each SV, with the net effect being a jump in the
GPS-derived aircraft position. More sophisticated spoofers may have a
fairly accurate estimation of the GPS measurements being received by
the aircraft and can discretely add a small, “undetectable” step bias to

these measurements. A less subtle spoofer would have to use a larger bias
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to ensure effectiveness in corrupting the measurements while running the

risk of being detected.

(b) Spoofing Model B — A more intelligent (and considerably more difficult

to detect) spoofing failure is modeled as a steadily increasing (ramp) bias

value added to each SV pseudo-measurement. Smaller ramp rates are

more difficult to detect than large rates because a slow change may be

hidden in the noise expected by the elemental filters. A range of ramp

rates will be used with the purpose of determining the detection and iso-

lation capabilities of MMAE. Ramp spoofing will be termed “intelligent”

for the remainder of this report.

Table 3.1 summarizes the different failures that are simulated in this research. These

failures are induced on each of the PLS hardware configurations under test.

Table 3.1 Failure Types and Models [41,42]

“ || Fail Type | Description | Fail Method ”
No Failure N/A R = R,
1 || Interference Jump in Increase R from

Measurement Noise

Ry to Ry x Magn

int

2 Step Step Bias on each Add bias=Magn,,;
Spoofing Pseudorange to each GPS measurement

3 Ramp Ramp Bias on each | Add bias=Magn,,; x (t — o)
Spoofing Pseudorange to each GPS measurement

3.4.2 MMAE Failure Models.

MMAE structure is used to detect and isolate interference failures.

A bank of three elemental filters in an

One filter is

tuned for operation when no interference failure has occurred (i.e. measurement

noise R = Ry). The two remaining elemental filters are each tuned for best operation

with increased levels of measurement noise R. An increase in measurement noise

by a factor of 2000 (i.e. measurement noise R = Rx2000) is assumed to be the

highest level of real-world interference that will be encountered. The third elemental
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filter models this highest assumed level of interference; it is tuned for best operation
when R = Rpx2000. It is hypothesized that the interference elemental filters will
operate most effectively when the levels of their respective interference assumptions
are separated by approximately an order of magnitude. This hypothesis will be
verified experimentally. Based on this hypothesis, the second elemental filter is

tuned for R = Rx200.

MMAE-based FDI is accomplished via the information contained in the residu-
als of the elemental filters. The residuals produced by a filter with an accurate model
of the real world are zero-mean, white, Gaussian, and have covariance HP"HT + R.
For this discussion, we will term these residual characteristics “good”. If the residu-
als of any elemental filter have good characteristics, then that filter’s hypothesis of
the real world is assumed to be correct. For example, if the R = Rox200 interference
filter, filter two, displays good residuals, then the probability of model correctness
flows to filter two and the MMAE algorithm detects a real world interference level
200 times Ryp. If the level of jamming seen by the filter lies between, for example,
the 200xRo and 2000xRy levels of interference modeled by elemental filters two and
three, then the residuals of those two filters will both display some good character-
istics. In this case the probability of having the correct model will be shared by
models two and three, and the level of real world interference is isolated by blend-
ing the measurement noise hypotheses of these two filters based on the computed

probability of each being correct.

Five elemental filters are used to detect and isolate spoofing failures of both
step and ramp types. As with interference failures, the first elemental filter is tuned
for best operation with no failure induced. The second elemental filter is tuned for
best operation given a small measurement bias added to the SV pseudoranges. A
third elemental filter is tuned based on a much larger measurement bias added to
the SV pseudoranges. The final two elemental filters model correspondingly small

and large measurement biases of a negative magnitude. The choice of this spoofing
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filter bank configuration is made based on the same order-of-magnitude separation
arguments used to hypothesize the configuration of the interference MMAE filter
bank. In each case, the effectiveness of the proposed filter bank configurations will

be evaluated experimentally and changed as required for best FDI performance.

For step-type spoofing failures, MMAE-based FDI is conceptually done in ex-
actly the same way jamming failures are detected and isolated (although the next
chapter will show the need for, and implementation of, a moving-bank “pseudo-
residual” MMAE to handle spoofs, rather than a standard MMAE). Probability
flows to the failure models (or model, in the case of an exact hypothesis match) that
most closely match the real world spoofing condition. The level of real world spoof-
ing is estimated by blending the spoofing hypotheses of the elemental filters based
on the computed probability associated with each filter. Because of the blending
capability of MMAE, there is no need to hypothesize ramp bias failures. As the
value of the ramp increases, the hypothesis probability should gradually flow from
one model to the next. The resulting blended estimate of the magnitude of the real

world spoofing failure will follow the growth of the actual ramp failure.

The final steps of this research will involve identification of jamming or spoof-
ing failures using all of the eight elemental filters described above (one nominal,
three jamming strengths, and four spoofing biases). These simulations will establish
the performance of MMAE FDI under the operational-like assumption that either
jamming or spoofing is possible. The greatest difficulty for the FDI algorithm un-
der this assumption will be disambiguating between the failure types. Performance
analyses will argue for a two-tiered algorithm, one seeking spoofs and the second
seeking interference/jamming, rather than a single MMAE attempting to detect all

failure modes simultaneously.
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3.5 Simulation Software

Multimode Simulation for Optimal Filter Evaluation (MSOFE) is a general-
purpose, multimode simulation program for designing integrated systems that em-
ploy optimal (Kalman) filtering techniques and for evaluating their performance [29].
The general-purpose construction of MSOFE allows its application to a wide variety
of user-specific problems with a minimal amount of new software development. The
United States Air Force uses MSOFE for the validation of all systems that use op-
timal filtering techniques. MSOFE provides Monte Carlo and covariance simulation

modes.

Multiple Model Simulation for Optimal Filter Evaluation (MMSOFE) was de-
veloped by Nielsen [31,32] at the Air Force Institute of Technology to support the
analysis of systems using a multiple model adaptive filter structure. MMSOFE is
written as an extension to MSOFE and is based on the same core code. The MM-
SOFE program propagates multiple filters forward in parallel while performing the
hypothesis probability and blending calculations required for MMAE and other mul-
tiple model algorithms. The Monte Carlo simulation mode of MMSOFE is used in

all phases of the work.

3.6 Summary

This chapter has presented the models used for simulating the PLS, includ-
ing the navigation component models and the failure implementation and detection
models. The failure detection and simulation methods used in this research have also

been discussed. Results and analysis of these simulations are presented in Chapter 4.
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4. Results and Analysis

4.1 Introduction

This section reviews the failure models and navigation component configura-
tions used in this research, along with a brief discussion of why each is of interest. A
standard MMAE algorithm will be used subsequently to address detection of jam-
ming/interference (increased measurement noise), whereas a moving-bank MMAE
will be shown to be more appropriate to detect and compensate for the onset of

spoofing (measurement bias).

4.1.1 Failure Models. Jamming is the total loss of GPS satellite trans-
missions due to heavy rf interference. With the loss of GPS signals, navigation is
totally dependent on the remaining sensors, and for this study, almost entirely based
on the onboard INS. No INS currently in production, or even realistically foreseen,
has error characteristics small enough to be the sole primary sensor in a PLS. While
it would be of interest to observe the inflight (not landing) navigation performance
of an MMAE filter bank specifically modelling this failure, that extension is beyond
the scope of this work. The problem of jamming was briefly considered to confirm

the above presumptions. These results are presented in Section 4.2.2.

RF interference not strong enough to cause total loss of the GPS transmissions
is modelled as increased measurement noise. Interference models low-power jamming
from hostile sources, as well as navigation in areas of abnormally high rf activity, as
in the immediate area of television or radio microwave relay stations. Additionally,
as antenna and signal processing technology improves, devices which now result in a
total loss of GPS transmissions may, in the future, only have the effect of increasing
the measurement noise associated with the GPS receiver. It is anticipated that the
MMAE algorithm will do a good job of detection and isolation against this failure
type.




Spoofing of a GPS receiver occurs when a hostile source presents GPS-like
transmissions to the receiver which are slightly stronger than the real GPS signals
and which will give an incorrect navigation solution. Intelligent spoofers would be
able to present GPS-like signals giving a navigation solution with very little initial
offset from the real GPS navigation solution. Once the receiver accepts these false
signals they are “walked off” the real solution. This is modelled as a ramp offset
from the true GPS solution. Less intelligent spoofers would present signals with a
very large, easily identifiable step offset. The onset of unintelligent spoofing will be
seen as a large spike in the measurement residuals within the elemental filters of the
MMAE (or within a single non-adaptive Kalman filter if one were used rather than
an MMAE algorithm). Identification is easily done based on that spike. Intelligent
spoofing is potentially much more difficult to detect. For ramp offsets which grow

slowly enough to be hidden in the noise, there are no means available for detection.

Realistically speaking, intelligent spoofing would be tremendously difficult to
implement. Prior to, and over the duration of, the spoof, the spoofer would have to
know the position of the aircraft with very nearly the same precision as the aircraft’s
onboard filters. This is required so that the spoofer could maintain a slowly growing
offset in the false GPS solution. It is expected that the MMAE algorithm will
effectively detect and isolate spoofing with a step onset or <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>